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1 Practical Aspects of Deep Learning

Machine Learning is all about decisions: the right set up for training/test/validation sets,
amount of layers, amount of hidden units per layer, learning rate, activation functions per
layer, etc. These decisions are not universal, but rather depend on factors like the number
of input features, type and amount of data, whether we are training on GPU or CPU, and
many other things.
These factors are chosen in a mostly iterative process in which we experiment with different
values and see what works; this can take a long, long time. Efficiency is determined by how
quickly we can go through this process, and the way we set up our data can improve that
speed.
Traditionally, we divide our data in three sections:

• Training Set, which is used to train algorithms

• Hold–out/Cross validation/Development Set, which is used to see which of many dif-
ferent models performs best.

• Test Set, which gives us an unbiased estimate of how well the algorithm is doing

The percentage of the data that will be allocated to each of these three sections depends on
the amount of data itself; the larger the amount of data, the higher the percentage that will
be allocated to the training set. This is because the goal of the validation set is to test dif-
ferent algorithms on it and see which one works better; you do not need too many samples
for that. In a similar vein, the goal of the test set is to give you a confident estimate of how
your end classifier is performing — no need to get a high number of samples.
A dataset with 1̃0k samples could perfectly have a 60/20/20 split. However, if the dataset
size climbs up a couple degrees of magnitude, it is more advisable to have a split that looks
like 99/0.5/0.5.
Another important consideration to keep in mind when setting these sets is to make sure
that the samples from the validation and test sets come from the same source(s). For in-
stance, in a Computer Vision application, our algorithm may prove ineffective if the val-
idation set is comprised of high–resolution pictures crawled off the internet, whereas the
training set is comprised of humble low–resolution user pictures. In contrast to this, deep
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learning algorithms have a huge hunger for training data. The larger the training set, the
better the algorithm’s performance. A lot of creative tactics are employed in this process,
such as cropping, tilting, crawling webpages, etc.

Two terms are essential when analysing the performance of a neural network: bias refers
to underfitting, a situation where the model is bad at predicting. On the other hand, vari-
ance refers to overfitting — your model doing too well when predicting to the point that it
cannot generalise properly and predict new samples correctly.
We can spot these two metrics by taking a look and comparing the training set error and the
validation set error: if the train set error is low, but the validation set error is high, we know
the model is overfitting — meaning it has high variance. Similarly, if even the train set error
is high, the model has high bias and is thus underfitting the data.

Our approach must adapt to the issue our model is presenting:

• High bias:
Try a bigger neural network, train it for longer time, find a new neural network archi-
tecture

• High variance:
Get more data, regularisation, find a new neural network architecture

Regularisation is a helpful method to deal with high variance. One of the most common
regularisation techniques is called L2 regularisation, which involves adding a regularising
term to the cost function used in the neural network. For instance, this would look like:

J (w [1], b [1], ..., w [l ], b [l ]) =
1

m

n
∑

i=1

L ( ŷ (i ), y (i )) +
λ

2m

L
∑

l=1

∥w [l ]∥2

Where

∥w [l ]∥2 =
n [l ]
∑

i=1

n [l−1]
∑

j=1

(w [l ]
i , j )

2

This matrix norm is called the Frobenius norm. L2 regularisation is also called weight decay
because in practise it is the same as multiplying the W matrix by a number smaller than 1,
so that it also gets smaller progressively. In every iteration of gradient descent, this is seen
as:

w [l ] =w [l ]−
αλ

m
w [l ]−α value obtained from backpropagation

Regularisation aids in the reduction of bias because essentially the regularising term pe-
nalises the weight matrix from growing too large; in practice, this can render many of the
matrices so close to zero that it virtually eliminates the hidden unit from the neural network.
This will decrease how much the model is overfitting the train data.
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Another commonly used regularisation technique in Deep Learning is called dropout reg-
ularisation. It consists of going through each layer and setting some probability of elimi-
nating a node in the neural network. This is usually decided for every training sample.
There are a few ways of implementing dropout:

• Inverted Dropout:

1 ’’’
2 Layer l=3
3 ’’’
4 keep_prob = 0.8
5 d3 = np.random.rand(a3.shape[0], a3.shape [1]) < keep_prob
6 #generates a tensor of the same size as the activation of

the layer
7 #elements of tensor either 0 or 1
8 a3 = np.multiply(a3, d3)
9 #If multiplied by zero , it cancels out

10 a3 /= keep_prob
11 #It scales a3 so that its expected value remains the same
12 #Otherwise it could affect the value of the next layer
13

During testing, we do not apply dropout.

In general, the number of neurons in the previous layer gives us the number of columns
of the weight matrix, and the number of neurons in the current layer gives us the number
of rows in the weight matrix.
There are other useful techniques for regularisation:

• Data augmentation: modifying samples by applying random modifications on them
(such as distorting, flipping) so that they give more information to the algorithm.

• Early stopping: you plot your training and validation set errors and see at which point
the network had not yet overfitted the data and was doing okay for both the training
and the evaluation set. You stop training at that point.

• Parameter sharing: this consists in forcing a group of parameters to be equal. This
technique is commonly used in convolutional neural networks. CNNs take advantage
of the spatial structure of images by sharing parameters across different locations in
the input. Since each kernel is convoluted with different blocks of the input image,
the weight is shared among the blocks instead of having separate ones.
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Figure 1: Image and description of Parameter Sharing sourced from here

When training a neural network, a technique that makes the training process a lot faster is

normalisation. This process consists of two steps: firstly, you calculate the meanµ ( 1
m

m
∑

i=1
x (i ))

and subtract it from every sample so that x := x − µ. Then, you calculate the variance

σ2 = 1
m

m
∑

i=1
(x (i ))2 and divide each sample byσ2. If you use this scale to normalise the training

set, remember to use it with the test set too! Normalisation is helpful because it decreases
the range of values that the cost function can take, rendering the gradient descent process
more efficient.

2 Optimisation Algorithms

Optimisation Algorithms can speed up significantly the training process, especially in the
presence of big data. One technique commonly used is that of mini–batch gradient de-
scent: normally, with gradient descent, the algorithm has to process every sample in the
(potentially huge) training set. In order to avoid this, we create "mini–batches" that only
have a portion of the larger training set. To run this on our training set, we do

1 for t in range(amount_of_mini_batches):
2 Forward prop on X^{t} (vectorised implementation)
3 Compute the cost function J for the minibatch
4 Back prop to compute gradients
5 Update the parameters in the layer

This will be an epoch of the gradient descent algorithm. Every epoch, we use a differ-
ent mini–batch. Typical mini–batch sizes are 64, 128, 256, 512, 1024.... Because of the way
that computer memory is laid out and access, sometimes the code runs faster when the
mini–batch size is a power of two.
When you plot the number of iterations vs the cost, the mini–batch approach is significantly
noisier than the regular approach; it should still be a downward trend, but the noise comes
from the fact that each epoch it is essentially training on a new training set. One set might
prove easier than another one.

Exponentially weighted averages are a tool that allows us to access more sophisticated
optimisation algorithms. It is a quantitative technique used as a forecasting model for time
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series analysis. This consists in setting a value Vt so that vt = βVt−1 + (1−β )θt . Depend-
ing on the size of β , we will get a different value. This is because essentially our formula is
just a way to sum the product between your samples and a decaying function. If we assume
t = t i me , then whenβ = 0.9 it is taking the exponentially weighted average focusing on the
last ten days. This is because it takes around 10 days for the value of the decaying function
to decay 1

e from the peak. In more general terms, for ε= 1−β , (1−ε)
1
ε = 1

e . This method is
frequently used in Machine Learning because it is more efficient in both terms of memory
and computational efficiency.

Bias correction can render our computation of these averages more accurate. This is
needed because at first, since V0 = 0, all our values will be small and innacurate in repre-
senting the average. This can be fixed by taking Vt

1−β t instead of just Vt . This means that we

will divide both sides by 1−β t so you can obtain vt . Many people don’t bother applying
bias correction and instead opt to wait out the bias, but if you are concerned with the initial
accuracy of the average, then this is a great technique to deal with it.

Gradient Descent with Momentum almost always works better than standard gradient
descent. As opposed to GD, GDM will compute the derivatives of the current mini–batch,
as well as Vd b and Vd w , where Vd b =βVd b +(1−β )d b and Vd W =βVd W +(1−β )d W . Once
we have these values, we will update our parameters as w :=w −αVd w and b := b −αVd b .
This is because knowing what the exponentially weighted average of the derivatives is like
can help us regulate the speed at which gradient descent goes and the way it accelerates.
Using this analogy, β will be like friction, preventing it from keep on rolling. Let us look at
an algorithm to compute this:

On iteration t:

Compute dW, db on the current batch

vd W =βvd W + (1−β )d W

vd b =βvd b + (1−β )d b

W =W −αvd w

b = b −αvd b

Another algorithm we can use for optimisation is called Root Mean Square prop, RM-
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Sprop. It works as

On iteration t:

Compute dW, db on the current batch

Sd W =βSd W + (1−β )d W 2

Sd b =βSd b + (1−β )d b 2

W =W −α
d W
p

Sd W

b = b −α
d b
p

Sd b

Based on the size of d W and d b , the updates of the parameters will either become larger
or smaller depending on how much each parameter oscillates in relation to the minimum
point. Very often, to avoid the model from dividing by zero, we add a small term ε (e.g. 10−8)
to the denominator of the term that is being multiplied with α

The Adam Optimisation Algorithm (Adaptive Moment Estimation) is a rare case of an al-
gorithm that has proven to be versatile in adapting to different deep learning architectures.
It works as follows:

1. Initialise Vd W ,Sd W , Vd b ,Sd b = 0, 0, 0, 0

2. On iteration t:
Compute d W , d b using the current minibatch
Vd W =β1+ (1−β1)d W
Vd b =β1+ (1−β1)d b
Sd W =β2Sd W + (1−β2)d W 2

Sd b =β2Sd b + (1−β2)d b 2

V corrected
d W = Vd W

(1−β t
1)

V corrected
d b = Vd b

(1−β t
1)

S corrected
d W = Sd W

(1−β t
2)

S corrected
d b = Sd b

(1−β t
2)

Now, perform the update:

W :=W −α V corrected
d W
q

S corrected
d W +ε

b := b −α V corrected
d b
q

S corrected
d b +ε

As you can see, this algorithm combines gradient descent with momentum with RMSprop.
This algorithm has a large number of hyperparameters: α,β1,β2,ε. When using Adam, peo-
ple normally iterate through different values ofα to see which one proves the most efficient,
while using the default values for the other parameters, namely β1 = 0.9,β2 = 0.999,ε =
10−8.
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One of the things that might help speed up the learning algorithm is to slowly reduce the
learning rate over time, a process known as learning rate decay. The intuition behind this
action is that during the early steps of training, you can afford to take large steps each epoch;
however, as you get closer and closer to the minimum, smaller steps are more efficient and
prevent the algorithm from going too far away. The general formula for learning rate decay
is

αdecay =
1

1+decayRate x epochNumber
α0

Other than this formula, other ways people approach learning rate decay are:

• α= number smaller than one epochNumber ·α0

• α= kp
epochNumber

·α0

• Manual decay

3 Hyperparameter Tuning

Machine Learning applications tend to involve a large amount of hyperparameters. When it
comes to finetuning them, it is helpful to remember that not all of them are equally as impor-
tant. In most applications, focusing on finetuningα,β , number of hidden units, mini-batch size
is the most efficient approach. Even out of this subgroup, only α is constantly messed
around with; β tends to remain with its default value of 0.9.
When choosing random values to sample, it is important to find an appropriate scale for
the hyperparameter in question. For example, the range of 2 to 200 might be good for the
amount of hidden layers in a particular project, but if we are checking out possible values
for α, it is better to use a logarithmic scale.

4 Batch Normalisation (BN)

This algorithm makes the hyperparameter search problem easier and the neural network
more robust. Batch normalisation consists in either normalising the value of a neural net-
work layer before the activation function is applied (more common) or after.
This is implemented the following way:

• Given some intermediate values Z (1), ..., Z (m )

• Compute:
µ= 1

m

∑

i z (i )

σ2 = 1
m

∑

i (Zi −µ)2

Z (i )norm =
Z (i )−µp
σ2+ε

Ẑ i = ΓZ (i ) +β (This step is needed so that not every hidden union has the same dis-
tribution.) Gamma and Beta are learnable hyperparameters.
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Usually, batch normalisation is already defined in deep learning frameworks, so there is no
need to implement it from scratch.
When doing batch normalisation, the b hyperparameter gets cancelled out (since we sub-
tract the mean from every element), so very often it is just eliminated from the process al-
together.
Since at test time we just use a singular sample, we need to calculate an estimate of µ and
σ2 using the EWA across all of the minibatches. These will be the values we will use to apply
normalisation to the test sample before feeding it into the (normalised) network.

5 Multiclass Classification

Softmax Regression is a generalisation of logistic regression that accounts for several out-
put classes. The way we achieve this is by setting the final layer to be a softmax layer by
adding a softmax activation function: t = e z [l ] , and then

a [l ] =
e z [l ]

C
∑

i=1
ti

where C stands for the number of possible output classes. Then, the output will be a vector
with probabilities that the element belongs to several possible output labels.
Training will remain the same when we add this softmax function, the only difference being
the loss function we will use. Since there are several possible probabilities represented in
the output vector of this activation function, we will measure it as:

L ( ŷ , y ) =−
C
∑

i=1

yi l o g ( ŷi )

Nowadays we use another version of this activation function for multiclass classification:
log-softmax, namely

x −ma x (x )

1 sample!
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